Sabtu, 18 Juni 2011

Types of Data Collection

Weekly Reflective Journal
Part II (March, 1st 2011)

Jenis Data Kuantitatif dan Kualitatif

Saya mendapatkan wawasan, bahwa matakuliah itu memiliki karakteristik  informatif, teoritik dan metodik. Mempelajari materi-materi yang dominan informasi dan teori/ konsep bisa memadai dengan membaca sumber atau browsing internet, ia akan memberi makna kepada pembaca sejauh ia mampu mencerna konsep dan teori tersebut. Seperti membaca sejarah, semakin cerdas seseorang, semakin banyak makna yang dapat ia gali dari hasil bacanya.
Namun berbeda dengan matakuliah yang  dominan metodologi. Seperti yang saya jalani sekarang, di kuliah Metodologi Penelitian Pendidikan mutlak ada pembimbing materi dan teknis yang dapat mengarahkan pemahaman saya tentangnya sehingga terhindar dari salah kaprah. Diperlukan keterampilan memadukan metode itu dalam sebuah kajian atau disiplin ilmu tertentu, dalam konteks ini, disiplin ilmu pendidikan.
Mempelajari Metodologi Penelitian Pendidikan menjadi penting dalam rangka mengetahui bagaimana cara mengkaji Ilmu Pendidikan, sehingga keilmuan sarjana, magister atau doktor bidang pendidikan memiliki wawasan yang integral, tidak parsial, dan mampu memadukan atau menerapkan ilmu metodologinya dalam bidang keahliannya.
Berikut refleksi kuliah dengan tema Jenis data kuantitatif dan kualitatif. Dalam uraian ini juga, saya menyarikan hasil baca saya terhadap materi yang telah saya terima sebagai topik reading share di antara banyak topik yang telah dibagi teman-teman sekelas.[1]
Data adalah sesuatu yang diketahui atau sesuatu yang diasumsikan (anggapan). Sesuatu yang akan diteliti atau diselidiki.
Klasifikasi data berdasarkan Jenis datanya dapat dikelompokkan menjadi dua hal utama yaitu data  kualitatif dan kuantitatif.
Data kuantitatif adalah data berbentuk angka-angka atau data yang dapat diukur dalam suatu skala numerik (angka) atau data kualitatif yang diangkakan (scoring). Sesuai dengan bentuknya, data kuantitatif dapat diolah atau dianalisis menggunakan teknik perhitungan matematika atau statistika.
Data kualitatif adalah data yang berbentuk kata-kata yang mengandung makna, kalimat dan gambar, tidak dapat diukur dalam skala numerik. Data kualitatif diperoleh melalui berbagai macam teknik pengumpulan data misalnya wawancara, analisis dokumen, diskusi terfokus, atau observasi yang telah dituangkan dalam catatan lapangan (transkrip). Bentuk lain data kualitatif adalah gambar yang diperoleh melalui pemotretan atau rekaman video.
Data kuantitatif dapat dikelompokkan dalam dua bentuk yaitu sebagai berikut:
1.    Data diskrit adalah data dalam bentuk angka (bilangan) yang diperoleh dengan cara membilang. Contoh data diskrit misalnya:
1)      Jumlah Sekolah Dasar Negeri di Kecamatan Cibiru sebanyak 20.
2)      Jumlah siswa laki-laki di SDN 1 sebanyak 67 orang.
3)      Jumlah penduduk di Kabupaten Bandung Barat sebanyak 246.867 orang.
Karena diperoleh dengan cara membilang, data diskrit akan berbentuk bilangan bulat (bukan bilangan pecahan).
2.    Data kontinum adalah data dalam bentuk angka/bilangan yang diperoleh berdasarkan hasil pengukuran. Data kontinum dapat berbentuk bilangan bulat atau pecahan tergantung jenis skala pengukuran yang digunakan. Contoh data kontinum misalnya:
1)      Tinggi badan Budi adalah 150,5 centimeter.
2)      IQ Budi adalah 120.
3)      Suhu udara di ruang kelas 24o Celcius.

Berdasarkan tipe skala pengukuran yang digunakan, data kuantitatif dapat dikelompokan dalam empat jenis (tingkatan) yang memiliki sifat berbeda yaitu:
1.    Data nominal atau sering disebut juga data kategori yaitu data yang diperoleh melalui pengelompokkan obyek berdasarkan kategori tertentu.  Perbedaan kategori obyek hanya menunjukan perbedaan kualitatif.
Walaupun data nominal dapat dinyatakan dalam bentuk angka, namun angka tersebut tidak memiliki urutan atau makna matematis sehingga tidak dapat dibandingkan. Logika perbandingan “>” dan “<” tidak dapat digunakan untuk menganalisis data nominal. Operasi matematika seperti penjumlahan (+), pengurangan (-), perkalian (x), atau pembagian (:) juga tidak dapat diterapkan dalam analisis data nominal. Contoh data nominal antara lain:
  • Jenis kelamin yang terdiri dari dua kategori yaitu:
(1)  Laki-laki
(2)  Perempuan

Angka (1) untuk laki-laki dan angka dan (2) untuk perempuan hanya merupakan simbol yang digunakan untuk membedakan dua kategori jenis kelamin. Angka-angka tersebut tidak memiliki makna kuantitatif, artinya angka (2) pada data di atas tidak berarti lebih besar dari angka (1), karena laki-laki tidak memiliki makna lebih besar dari perempuan.
Terhadap kedua data (angka) tersebut tidak dapat dilakukan operasi matematika (+, -, x, : ). Misalnya (1) = laki-laki, (2) = perempuan, maka (1) + (2) ≠ (3), karena tidak ada kategori (3) yang merupakan hasil penjumlahan (1) dan (2).
  • Contoh lain data nominal adalah Status pernikahan yang terdiri dari tiga kategori yaitu: (1) Belum menikah, (2) Menikah, (3) Janda/ Duda. Data tersebut memiliki sifat-sifat yang sama dengan data tentang jenis kelamin.
2.    Data ordinal adalah data yang berasal dari suatu objek atau kategori yang telah disusun secara berjenjang menurut besarnya. Setiap data ordinal memiliki tingkatan tertentu yang dapat diurutkan mulai dari yang terendah sampai tertinggi atau sebaliknya.
Namun demikian, jarak atau rentang antar jenjang yang tidak harus sama. Dibandingkan dengan data nominal, data ordinal memiliki sifat berbeda dalam hal urutan. Terhadap data ordinal berlaku perbandingan dengan menggunakan fungsi pembeda yaitu  “>” dan “<”. Walaupun data ordinal dapat disusun dalam suatu urutan, namun belum dapat dilakukan operasi matematika ( +, – , x , : ). Contoh jenis data ordinal antara lain:
  • Tingkat pendidikan yang disusun dalam urutan sebagai berikut:
(1)  Taman Kanak-kanak (TK)
(2)  Sekolah Dasar (SD)
(3)  Sekolah Menengah Pertama (SMP)
(4)  Sekolah Menengah Atas (SMA)
(5)  Diploma
(6)  Sarjana
Analisis terhadap urutan data di atas menunjukkan bahwa SD memiliki tingkatan lebih tinggi dibandingkan dengan TK dan lebih rendah dibandingkan dengan SMP.
Namun demikian, data tersebut tidak dapat dijumlahkan, misalnya SD (2) + SMP (3) ≠ (5) Diploma. Dalam hal ini, operasi  matematika        ( + , – , x, : ) tidak berlaku untuk data ordinal.
  • Contoh lain data ordinal adalah Peringkat (ranking) siswa dalam satu kelas yang menunjukkan urutan prestasi belajar tertinggi sampai terendah. Siswa pada peringkat (1) memiliki prestasi belajar lebih tinggi dari pada siswa peringkat (2).
3.    Data Interval adalah data hasil pengukuran yang dapat diurutkan atas dasar kriteria tertentu serta menunjukan semua sifat yang dimiliki oleh data ordinal.
Kelebihan sifat data interval dibandingkan dengan data ordinal adalah memiliki sifat kesamaan jarak (equality interval) atau memiliki rentang yang sama antara data yang telah diurutkan. Karena kesamaan jarak tersebut, terhadap data interval dapat dilakukan operasi matematika penjumlahan dan pengurangan ( +, – ). Namun demikian masih terdapat satu sifat yang belum dimiliki yaitu tidak adanya angka Nol mutlak pada data interval. Berikut dikemukakan tiga contoh data interval, antara lain:
1)    Hasil pengukuran suhu (temperatur) menggunakan termometer yang dinyatakan dalam ukuran derajat. Rentang temperatur antara 00 Celcius sampai  10 Celcius memiliki jarak yang sama dengan 10 Celcius sampai  20 Celcius. Oleh karena itu berlaku operasi matematik ( +, – ), misalnya 150 Celcius + 150 Celcius = 300 Celcius. Namun demikian tidak dapat dinyatakan bahwa benda yang bersuhu 150 Celcius memiliki ukuran panas separuhnya dari benda yang bersuhu 300 Celcius. Demikian juga, tidak dapat dikatakan bahwa benda dengan suhu 00 Celcius tidak memiliki suhu sama sekali. Angka 00 Celcius memiliki sifat relatif (tidak mutlak). Artinya, jika diukur dengan menggunakan Termometer Fahrenheit diperoleh 00 Celcius = 320 Fahrenheit.
2)    Kecerdasaran intelektual yang dinyatakan dalam IQ. Rentang IQ 100 sampai  110 memiliki jarak yang sama dengan 110 sampai  120. Namun demikian tidak dapat dinyatakan orang yang memiliki IQ 150 tingkat kecerdasannya 1,5 kali dari urang yang memiliki IQ 100.
3)    Didasari oleh asumsi yang kuat, skor tes prestasi belajar (misalnya IPK mahasiswa dan hasil ujian siswa) dapat dikatakan sebagai data interval.
4)    Dalam banyak kegiatan penelitian, data skor yang diperoleh melalui kuesioner (misalnya skala sikap atau intensitas perilaku) sering dinyatakan sebagai data interval setelah alternatif jawabannya diberi skor yang ekuivalen (setara) dengan skala interval, misalnya:
Skor (5) untuk jawaban “Sangat Setuju”
Skor (4) untuk jawaban “Setuju”
Skor (3) untuk jawaban “Tidak Punya Pendapat”
Skor (2) untuk jawaban “Tidak Setuju”
Skor (1) untuk jawaban “Sangat Tidak Setuju”
Dalam pengolahannya, skor jawaban kuesioner diasumsikan memiliki sifat-sifat yang sama dengan data interval.

4.    Data rasio adalah data yang menghimpun semua sifat yang dimiliki oleh data nominal, data ordinal, serta data interval. Data rasio adalah data yang berbentuk angka dalam arti yang sesungguhnya karena dilengkapi dengan titik Nol absolut (mutlak) sehingga dapat diterapkannya semua bentuk operasi matematik ( + , – , x, : ).
Sifat-sifat yang membedakan antara data rasio dengan jenis data lainnya (nominal, ordinal, dan interval) dapat dilihat dengan memperhatikan contoh berikut:
1)    Panjang suatu benda yang dinyatakan dalam ukuran meter adalah data rasio. Benda yang panjangnya 1 meter berbeda secara nyata dengan benda yang panjangnya 2 meter sehingga dapat dibuat kategori benda yang berukuran 1 meter dan 2 meter (sifat data nominal). Ukuran panjang benda dapat diurutkan mulai dari yang terpanjang sampai yang terpendek (sifat data ordinal). Perbedaan antara benda yang panjangnya 1 meter dengan 2 meter memiliki jarak yang sama dengan perbedaan antara benda yang panjangnya 2 meter dengan 3 (sifat data interval). Kelebihan sifat yang dimiliki data rasio ditunjukkan oleh dua hal yaitu: (1) Angka 0 meter menunjukkan nilai mutlak yang artinya tidak ada benda yang diukur; serta (2) Benda yang panjangnya 2 meter, 2 kali lebih panjang dibandingkan dengan benda yang panjangnya 1 meter yang menunjukkan berlakunya semua operasi matematik. Kedua hal tersebut tidak berlaku untuk jenis data nominal, data ordinal, ataupun data interval.

2)    Data hasil pengukuran berat suatu benda yang dinyatakan dalam gram memiliki semua sifat-sifat sebagai data interval. Benda yang beratnya 1 kg. berbeda secara nyata dengan benda yang beratnya 2 kg. Ukuran berat benda dapat diurutkan mulai dari yang terberat sampai yang terringan. Perbedaan antara benda yang beratnya 1 kg. dengan 2 kg memiliki rentang berat yang sama dengan perbedaan antara benda yang beratnya 2 kg. dengan 3 kg. Angka 0 kg. menunjukkan tidak ada benda (berat) yang diukur. Benda yang beratnya 2 kg., 2 kali lebih berat dibandingkan dengan benda yang beratnya 1 kg..
Pemahaman peneliti terhadap jenis-jenis data penelitian tersebut di atas bermanfaat untuk menentukan teknik analisis data yang akan digunakan. Terdapat sejumlah teknik analisis data yang harus dipilih oleh peneliti berdasarkan jenis datanya.
Teknik analisis data nominal akan berbeda dengan teknik analisis data ordinal, data interval, dan data rasio. Teknik analisis data kualitatif akan berbeda dengan teknik analisis data kuantitatif.

  Dalam penelitian kualitatif jenis data terdiri dari dua bentuk yaitu
a.    Data Kasus
yaitu data yang hanya menjelaskan kasus-kasus tertentu, dalam arti, data kasus berlaku untuk kasus tersebut serta tidak digeneralisasikan dengan kasus lain dengan radius yang lebih luas. Data kasus lebih luas dan komprehensif dalam menggambarkan sebuah obyek penelitian, selain itu juga data kasus mempunyai area yang luasnya tergantung pada seberapa besar penelitian kualitatif itu.
Yang tidak kalah pentingnya bahwa data kasus memiliki batas-batas yang jelas satu dengan lainnya.

b.    Data pengalaman pribadi peneliti
yaitu sebagai bahan keterangan mengenai apa yang dialami oleh individu sebagai warga masyarakat tertentu yang menjadi obyek penelitian. Dengan data ini peneliti mendapatkan suatu pandangan dari dalam melalaui reaksi, tanggapan, interpretasi dan penglihatan para warga masyarakat sebagai obyek penelitian.

Klasifikasi data menurut cara memperolehnya maka dikategorikan menjadi dua:
1.    Data Primer
Data primer adalah secara langsung diambil dari objek / obyek penelitian oleh peneliti perorangan maupun organisasi.
Data primer disebut juga sebagai data asli atau data baru yang memiliki sifat up to date. Untuk mendapatkan data primer, peneliti harus mengumpulkannya secara langsung. Teknik yang dapat digunakan peneliti untuk mengumpulkan data primer antara lain observasi, wawancara, diskusi terfokus (focus grup discussion – FGD) dan penyebaran kuesioner.
Contoh :  Mewawancarai langsung siswa baru untuk meneliti preferensi siswa dalam  memilih sekolah di Pondok Pesantren.

2.    Data Sekunder
Data sekunder adalah data yang didapat tidak secara langsung dari objek penelitian. Peneliti mendapatkan data yang sudah jadi yang dikumpulkan oleh pihak lain dengan berbagai cara atau metode baik secara komersial maupun non komersial.
Atau dengan kata lain data yang diperoleh atau dikumpulkan peneliti dari berbagai sumber yang telah ada (peneliti sebagai tangan kedua). Data sekunder dapat diperoleh dari berbagai sumber seperti Biro Pusat Statistik (BPS), buku, laporan, jurnal, dan lain-lain.
Contoh:    Peneliti yang menggunakan data statistik perkembangan siswa baru di sebuah Pondok Pesantren atau hasil riset dari surat kabar atau majalah.

Pemahaman terhadap kedua jenis data di atas diperlukan sebagai landasan dalam menentukan teknik serta langkah-langkah pengumpulan data penelitian di tahapan berikutnya.
Kelebihan dan Kekurangan data Kualitatif dan Kuantitatif penulis gambarkan dalam tabel berikut:
Kuantitatif
(mengetahui sedikit tentang banyak)
Kualitatif
(mengetahui banyak tentang sedikit)
Data mudah dan cepat didapat
Memerlukan banyak perhatian, biaya dan energi serta waktu yang relatif panjang
Kurang mendalam
Rich, comprehenshif, deept.

Semoga pemahaman ini berdasar dan bermanfaat untuk bidang keilmuan yang sekarang sedang saya jalani.



[1] Harap Ibu dapat memberikan catatan di tempat yang perlu.

Tidak ada komentar:

Poskan Komentar